Filter protocols by method

As the majority of biological diversity remains unexplored and uncultured, investigating it requires culture-independent approaches. Archaea in particular suffer from a multitude of issues that make their culturing problematic, from them being frequently members of the rare biosphere, to low growth rates, to them thriving under very specific and often extreme environmental and community conditions that are difficult to replicate.

It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta’omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea.

The manipulation of gene expression levels in vivo is often key to elucidating gene function and regulatory network interactions, especially when it comes to the investigation of essential genes that cannot be deleted from the model organism’s genome. Several techniques have been developed for prokaryotes that allow to interfere with transcription initiation of specific genes by blocking or modifying promoter regions. However, a tool functionally similar to RNAi used in eukaryotes to efficiently degrade mRNA posttranscriptionally did not exist until recently.

Transposon insertion mutagenesis is a forward genetic approach that has been widely utilized for genetic characterization of bacteria and single-celled eukaryotes, and its applications are being rapidly expanded into a few archaeal model organisms for gene function analysis. Previously, we developed a Tn5-based in vivo transposon insertion mutagenesis system in the hyperthermophilic crenarchaeon S. islandicucs M.16.4 and defined the essential gene set under laboratory growth conditions.

Homologous recombination–based gene targeting is a powerful and classic reverse genetics approach to precisely elucidate in vivo gene functions in the organisms across all three domains of life. Gene function studies in Archaea, particularly for those flourishing in inhospitable natural environments that are anaerobic, usually hot, and acidic, have been a great challenge; however, this situation was recently overturned with the increasing availability of genetic manipulation systems in several cultivable archaeal species.

A well-functioning genetic system, which is important for studying gene functions in vivo, requires a transformation method, a vector system and a selection system. Sulfolobus acidocaldarius is a crenarchaeal model organism that grows optimally at 75 °C and a pH of 3. These extreme growth conditions cause some difficulties in developing a genetic system. With continuous efforts, versatile genetic tools have been developed for different species from the order of Sulfolobales.

Genetic manipulation through markerless exchange enables the modification of several genomic regions without leaving a selection marker in the genome. Here, a method using hpt coding for hypoxanthine phosphoribosyltransferase as a counter selectable marker is described. For Methanosarcina species a chromosomal deletion of the hpt gene is firstly generated, which confers resistance to the purine analogue 8-aza-2,6-diaminopurine (8-ADP).

Archaea inhabit a wide variety of habitats and are well-placed to provide insights into the origins of eukaryotes. In this primer, we examine the available model archaeal genetic systems. We consider the limitations and barriers involved in genetically modifying different archaeal species, the techniques and breakthroughs that have contributed to their tractability, and potential areas for future development.

Many research areas, e.g., basic research but also applied fields of biotechnology, biomedicine, and
diagnostics often suffer from the unavailability of metabolic compounds. This is mostly due to missing
easy and efficient synthesis procedures. We herein describe the biocatalytic/enzymatic production of
2-keto-3-deoxy-D-gluconate, an intermediate of central metabolic pathways in all three domains of life
and also of bacterial polysaccharides, lipopolysaccharides, and cell wall components. The method is based